Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Jin-Chang Ding,* Miao-Chang
 Liu, Hong-Ping Xiao and Mao-Lin Hu

Department of Chemistry and Material Science, Wenzhou Normal College, Wenzhou, 325027, People's Republic of China

Correspondence e-mail: hml64@sohu.com

Key indicators

Single-crystal X-ray study
$T=273 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.039$
$w R$ factor $=0.098$
Data-to-parameter ratio $=16.7$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

1,3-Dibenzylthymine

In the title compound, $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}$, the two phenyl rings are located on the same side of the thymine ring, resembling the two front claws of a crab. The crystal structure involves some weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions.

Comment

Nucleobases are important in biology, being responsible for a wide range of biochemical processes, such as complementary base pairing in genetic information storage and transfer, molecular recognition and some enzymatic reactions (Bazzicalupi et al., 2001). As a result, considerable efforts have been made to investigate thymine and its derivatives. These studies include the crystal structure and theoretical investigation of the electronic properties of cis-5-hydroperoxy-6-hydroxy-5,6dihydrothymine (Jolibois et al., 1998); the low-frequency vibrational spectrum of 1-methylthymine (Kirin et al., 1975); the synthesis, cation reporter properties and recognition of 1-methylthymine by a macrocyclic zinc(II) complex (Koike et al., 1998).

In an earlier study, we reported the synthesis and crystal structure of 1-benzylthymine (Ding et al., 2002). Since then, a new thymine derivative, 1,3-dibenzylthymine, (I), has been obtained and its crystal structure is reported here.

The title compound contains two phenyl rings and one heterocyclic ring (Fig. 1). The two phenyl rings, (C1-C6) and (C14-C19) are each essentially planar, with average deviations from planarity of 0.007 and $0.008 \AA$, respectively. The atoms of the thymine ring $(\mathrm{C} 8, \mathrm{C} 9, \mathrm{C} 11, \mathrm{C} 12, \mathrm{~N} 1, \mathrm{~N} 2)$ are coplanar, with an average deviation of $0.013 \AA$; the value in 1-benzylthymine is very similar, viz. $0.010 \AA$.

The two phenyl rings are located on the same side of the thymine ring, resembling the two front claws of a crab. The dihedral angles between the mean planes of the thymine ring and the phenyl rings are 81.7 (2) ${ }^{\circ}$ (phenyl ring C1-C6) and 67.4 (2) ${ }^{\circ}$ (phenyl ring C14-C19).

Moreover, the non-bonded interactions are also different in 1,3-dibenzylthymine and in 1-benzylthymine. In the former, there are only weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions $\mathrm{C} 7-$

Received 22 August 2003
Accepted 8 September 2003 Online 18 September 2003

Figure 1
1The molecular structure of (I), with the atom-numbering scheme Displacement ellipsoids are drawn at the 50% probability level. H atoms are drawn as spheres of arbitrary radius.
$\mathrm{H} 7 B \cdots \mathrm{O} 1\left(x-\frac{1}{2}, \frac{5}{2}-y,-z\right)$ and $\mathrm{C} 18-\mathrm{H} 18 \cdots \mathrm{O} 2(1+x, y, z)$ with $\mathrm{C} \cdots \mathrm{O}$ distances of 3.391 (2) and 3.481 (2) \AA, respectively; the angles at $\mathrm{H} 7 B$ and H 18 are 151 and 169°, respectively. On the other hand, in 1-benzylthymine, there are strong $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond interactions with $\mathrm{N} \cdots \mathrm{O}$ distances of 2.872 (5) \AA and 2.834 (5) \AA and significant $\pi \cdots \pi$ interactions between neighboring phenyl rings separated by $3.46 \AA$.

Experimental

The title compound was synthesized through the benzylation of 0.25 g thymine with 0.54 ml benzyl bromide by neutralization of 2.00 g potassium carbonate, and catalysis of 0.10 g tetrabutylammonium bromide in the mixed solvents N, N^{\prime}-dimethylacetamide and diethylene glycol ($v / v=1: 10$); the reaction time was five minutes in a National NN-S568WFS 900 W microwave oven. Single crystals suitable for X-ray data collection were obtained by recrystallization from a mixture of of ethanol and dichloromethane.

Crystal data

$\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}$
$M_{r}=306.35$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=8.7466(10) \AA$
$b=8.8637(10) \AA$
$c=20.720(3) \AA$
$V=1606.3(3) \AA^{3}$
$Z=4$
$D_{x}=1.267 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: none
7934 measured reflections
3508 independent reflections

> Mo $K \alpha$ radiation
> Cell parameters from 599 \quad reflections
> $\theta=2.3-18.0^{\circ}$
> $\mu=0.08 \mathrm{~mm}^{-1}$
> $T=273(2) \mathrm{K}$
> Block, colorless
> $0.45 \times 0.28 \times 0.25 \mathrm{~mm}$

2618 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.026$
$\theta_{\text {max }}=27.0^{\circ}$
$h=-10 \rightarrow 11$
$k=-11 \rightarrow 7$
$l=-20 \rightarrow 26$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$
$w R\left(F^{2}\right)=0.098$
$S=0.97$
3508 reflections
210 parameters
H -atoms parameters constrained

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0549 P)^{2}\right] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.12 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.12 \mathrm{e} \AA^{-3} \\
& \text { Extinction correction: } S H E L X L \\
& \text { Extinction coefficient: } 0.16 \text { (SU?) }
\end{aligned}
$$

Table 1
Selected geometric parameters $\left(\AA,^{\circ}\right)$.

O1-C12	$1.2168(18)$	$\mathrm{C} 4-\mathrm{C} 7$	$1.507(2)$
O2-C11	$1.2206(19)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.381(3)$
$\mathrm{N} 1-\mathrm{C} 12$	$1.373(2)$	$\mathrm{C} 8-\mathrm{C} 9$	$1.327(2)$
N1-C8	$1.376(2)$	$\mathrm{C} 9-\mathrm{C} 11$	$1.441(2)$
N1-C7	$1.470(2)$	$\mathrm{C} 9-\mathrm{C} 10$	$1.503(2)$
N2-C12	$1.385(2)$	$\mathrm{C} 13-\mathrm{C} 14$	$1.510(3)$
N2-C11	$1.4047(19)$	$\mathrm{C} 14-\mathrm{C} 19$	$1.377(2)$
N2-C13	$1.4819(19)$	$\mathrm{C} 14-\mathrm{C} 15$	$1.377(3)$
C1-C6	$1.356(3)$	$\mathrm{C} 15-\mathrm{C} 16$	$1.375(3)$
C1-C2	$1.361(3)$	$\mathrm{C} 16-\mathrm{C} 17$	$1.366(3)$
C2-C3	$1.377(3)$	$\mathrm{C} 17-\mathrm{C} 18$	$1.368(3)$
C3-C4	$1.367(2)$	$\mathrm{C} 18-\mathrm{C} 19$	$1.380(3)$
$\mathrm{C} 4-\mathrm{C} 5$	$1.371(2)$		
$\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 4$	$114.68(13)$	$\mathrm{N} 2-\mathrm{C} 13-\mathrm{C} 14$	$112.84(13)$

In the absence of significant anomalous dispersion effects, the 1480 Friedel pairs were merged and the absolute configuration can not be determined from the crystallographic experiment.

All H atoms were positioned geometrically and allowed to ride on their parent atoms at distances of $0.93 \AA$ for $\mathrm{Csp}^{2}-\mathrm{H}, 0.96 \AA$ for C (methyl) -H and $0.97 \AA$ for $\mathrm{C}($ methylene $)-\mathrm{H}$. Isotropic displacement parameters were set to $1.5 U_{\text {eq }}$ (methylene and methyl) and $1.2 U_{\text {eq }}$ (other H atoms) of the carrier atom.

Data collection: SMART (Bruker, 2000); cell refinement: SMART; data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Bruker, 2000); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

We acknowledge financial support by the Zhejiang Provincial Natural Science Foundation of China (No. 202137).

References

Bazzicalupi, C., Bencini, A., Berni, E., Ciattini, S., Bianchi, A., Giorgi, C., Paoletti, P., Valtancoli, B. (2001). Inorg. Chim. Acta, 317, 259-267.
Bruker (2000). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Ding, J. C., Liu, M. C., Zhao, Y. J. \& Hu, M. L. (2002). Z. Kristallogr. New Cryst. Struct. 217, 499-500.
Jolibois, F., D’Ham, C., Grand, A., Subra, R., Cadet, J. (1998). J. Mol. Struct. (Theochem), 427, 143-155.
Kirin, D., Colombo, L., Furic, K. \& Meier, W. (1975). Spectrochim. Acta, 31A, 1721-1727.
Koike, T., Gotoh, T., Aoki, S., Kimura, E., Shiro, M. (1998). Inorg. Chim. Acta, 270, 424-432.

